

Sparrow

The Dashcam Defender

Final Report

Dec20-11

Evan Timmons, Cobi Mom, Danny Yip,

Scott Vlasic, Ismael Duran, Durga Darba

1. Table of Contents

Table of Contents 2

Glossary 4

Executive Summary 5

Development Standards & Practices Used 5

Software practices 5

Hardware Practices 5

Summary of Requirements 5

Applicable Courses from Iowa State University Curriculum 5

New Skills/Knowledge acquired that was not taught in courses 5

Project Design 6

General Overview 6

Problem and Project Statement 6

Operational Environment 6

System Prototype Layout 7

Product Diagram 7

Engineering Constraints and Non-functional Requirements 8

Constraints 8

Non-Functional Requirements 8

Implementation 8

Mobile Application Implementation 8

ALPR Board Software Implementation 8

Cloud Implementation 9

Hardware Implementation 10

Testing 10

Mobile Application Testing 10

Database Testing 10

ALPR Board Software Software Testing 11

ALPR System Testing 11

Project Context 11

Appendix I – “Operation Manual” 12

ALPR Board Operation 12

Initial Setup 12

ALPR Board 12

SparrowV2 Graphical User Interface 13

Mobile Application Operation 15

Appendix II: Alternative Designs 17

2

Web Application 17

ALPR cloud computation 17

Design Document from CPRE/EE/SE 491 (Pages 18 - 41) 18

Appendix III: Other Considerations 42

Appendix IV: Code 43

Additional Documentation 43

List of Figures 47

3

2. Glossary

4

Term Definition

ALPR

Automatic License Plate Reader | A system that

automatically detects and records the numbers

and symbols of a license plate

AVI

Audio Video Interleave | Known by its initials AVI

and the .avi filename extension is a multimedia

container format introduced by Microsoft

GUI

Graphical User Interface | A form of user interface

that allows the user to interact with software

through icons rather than solely through the

command-line interface.

JSON

JavaScript Object Notation | An open standard file

format and data interchange format, that uses

human-readable text to store and transmit data

objects consisting of attribute-value pairs and

array data types.

3. Executive Summary

Development Standards & Practices Used

Software practices

● Make code correct first and fast second

● Always test your code

● Agile Methodology

● Integration with hardware

● Simple design

● Pair programming

● Continuous integration

Hardware Practices

● Integration with software

● Continuous validation testing

● Agile Methodology

Summary of Requirements

● Hardware development

● Mobile Application Development

● Database Design

Applicable Courses from Iowa State University Curriculum

● ComSci 309

● CPRE 288

● COMS 228

● SE/CPRE 185

● COMS 363

● CPRE 310

New Skills/Knowledge acquired that was not taught in courses

● Hardware Assembly

● Dart Programming Language

● Flutter Framework

● Hardware / Software integration

● API Calls

● Angular

5

4. Project Design

○ General Overview

Approximately 2 million people experience severe injuries from car accidents each year

in the United States. We hope to drastically reduce that number with Sparrow, a product

designed to automatically scan license plates and alert users to reckless drivers.

Sparrow is a smart dashcam system that is intended to increase the safety of those who

use it. The system is composed of a few main components, a dash camera, an ALPR board, a

smartphone app, and a backend database.

The ALPR board takes video input from the dash camera to read and interpret license

plate data of the cars around the user in real-time. Then the board uploads the recorded video

and JSON file of the detected plates to the database. The mobile application is then used to

browse the database video files by the license plate identifiers.

In a final product, these systems will be used in tandem to alert drivers when a

hazardous driver is near them. If the plate of a driver that has been properly flagged as

dangerous is detected by the user’s system, then both an audio and visual alert will prompt the

user on their smartphone.

The system aims to make a strong impact beyond just the safety of its immediate users.

Through careful restricted access protocols, law enforcement could use the system to find stolen

vehicles, fugitives and even amber alert vehicles with locational data. As a police officer that we

interviewed eloquently put it, this system will “be a ring doorbell for the road”.

○ Problem and Project Statement

The roads as we know it are full of reckless drivers. What if there was a way to

automatically detect when you are near a reckless driver? The solution that we are proposing is

the ability for everyday consumers to come together and crowdsource information on reckless

drivers. This is done by utilizing Sparrow, a product designed by us to automatically scan license

plates and report reckless drivers when they are encountered instantly. Reporting is supported

by a public facing website and app. This way, users can look up and report reckless drivers from

multiple fronts.

○ Operational Environment

Since the product will be mounted on the windshield, it needs to be able to handle the

fluctuation in temperatures that may occur in the car. Therefore, we will have to construct a

container to protect the device from severe weather when the car is unattended as well as from

consumer damages. This container must also be able to handle rough road conditions and keep

the camera stable. Another condition we must consider is the camera’s ability to capture data

given poor weather. To ensure this, we will have to use a camera that returns images in 1080p

or higher.

6

○ System Prototype Layout

Figure 4.1: Featured: Mobile Phone, ALPR Board and Dash Camera

○ Product Diagram

Figure 4.2: General Product Diagram to Show System Interaction

7

○ Engineering Constraints and Non-functional Requirements

■ Constraints

1. The final product consumer must not cost more than $1,000

2. The system must comply with all applicable safety and legal regulations

governing commercial automobile electronics.

3. The product must be powered through a standard 12V car outlet.

4. The amount of time to develop is not too long, because we only have 2

semesters to work on it.

5. It is hard to collaborate with the team due to COVID, and it makes it

harder for the hardware team to fix any technical issues.

■ Non-Functional Requirements

1. The mobile application and GUI shall respond to each button press within

.5 seconds of release

2. The mobile application should make sure the user’s password was

encrypted while storing into the database.

3. The system shall be able to record video at 60 frames per second.

4. The system shall be able to analyze ALRP video at 60 frames per second.

5. The system shall process and store videos of 1080p resolution.

6. A typical new user shall be able to fully understand and operate the

system within five minutes of initial contact.

7. The system shall be able to accurately read license plates at a speed

differential of up to 60 miles per hour.

5. Implementation

○ Mobile Application Implementation

We have chosen Flutter for our mobile application implementation. The main reason is

because we would like to learn more about flutter. Flutter can be used to develop a mobile

application fast, flexible, and provide a native performance experience to IOS, Android or web

applications. Flutter is a fast development framework, and because of its hot reload feature, we

can shorten the time to build UI, add and remove features, and fix bugs. In addition, thanks to

Material.io, we can build beautiful apps in Flutter with the minimum time, and at the same time,

the controls and usage are user friendly. Last but not least, flutter is a good platform to develop

in multiple platforms at the same time. Therefore, by using flutter, it will be easy for us to

maintain the code, especially when more codes are implemented in the future.

○ ALPR Board Software Implementation

For the software running locally on the ALPR board we focused on functionality over all

else. The board needed to have an interface allowing drivers to start and stop recordings with

ease. Thus, we need to implement a recording program, a ALPR program and a script to upload

the files to the database all controlled by a custom GUI. The GUI needed to be simple to use yet

still tie together all of the aforementioned functionality.

8

After researching and testing multiple options, we settled on the python based

PySimpleGUI package to aid in our GUI development. The package allowed for fast paced

prototyping, cross platform support and high system compatibility. The GUI shows a real time

preview of the camera yet needs to record the stream and send it to ALPR software at the same

time.

This proved challenging given that the board was running linux, an Operating System

that does not inherently support using one camera stream for multiple purposes. Eventually we

were able to produce a solution that worked by creating virtual cameras that duplicated and

streamed data from the original dash camera. When the user presses record in the GUI the

system then prompts the recording software to record an AVI video. Additionally, the ALPR will

initiate and output the license plate data in the form of a JSON file.

The final part of the ALPR Board’s software implementation is the code that works to

upload the AVI and JSON files to the database. The script creates names for both the video and

JSON files with a unique identifier and then uploads them to the S3 bucket and database

respectively. Then, further processing of the files happens on the AWS system.

○ Cloud Implementation

Mobile Application Database API

Figure 5.1: Mobile Application Database API

API Gateway

The gateway serves as a singular endpoint for our HTTP requests. With API Gateway we can

create an HTTP request that can easily be connected to a Lambda function.

Lambda Function

The lambda function is the computation needed for requests. It is triggered by the API Gateway

when called upon. The function is able to interact with the database in many ways, including

read, write, modify, add, etc.

DynamoDB

DynamoDB is a NoSQL database. Our purpose for it is to store user information and video

location file paths that will lead to videos on the S3 bucket. It also houses license plate

information gathered by users.

9

S3

S3 is a file system storage that Sparrow uses to store its videos. In relation to the mobile

application, it will get video URLs given by AWS to stream via the mobile application.

○ Hardware Implementation

We have chosen the NVIDIA Jetson TX2 as our hardware device to run the embedded

software and OpenALPR. We chose the Jetson because it is more powerful than other hardware

devices like the Raspberry Pi, which was necessary to run machine learning algorithms. In

addition to its superior hardware metrics, the Jetson TX2 also had documented use with the

OpenALPR software.

In addition to the board itself, there were many peripherals needed for the hardware

implementation. A third party camera connected to the Jetson TX2 to film and record footage of

the user driving with the OpenALPR software running. To add storage to the device, a 256 GB

SD Card was mounted on the board since video files take up a large amount of space. Another

peripheral connected to the board was a small LCD display to display the recording to the user

while they are driving.

6. Testing

○ Mobile Application Testing

Since we are using flutter, to test the mobile application, we use the flutter_test

dependencies package to do some testing. We have implemented a few tests, for example, we

test for the login page to make sure that users are able to successfully login if only they have

email and password that matches the database.

Besides, we also did some tests on the other class to make sure that it is working

correctly. In addition, we also test it manually, by using the Android phone emulator. We run

the application on Android phone emulator, and click on all the functionality that we have. To

make sure it runs correctly, we try to run the application again and again, and make sure that it

is working like what we expected.

○ Database Testing

To test the database with the board, we began by creating a prototype program on our

PCs that sends pre recorded videos to the AWS S3. From here, we moved the upload script to the

Nvidia Jetson and began looking at how license plate data saves and sends the video back to the

bucket.

Furthermore, to ensure the video is associated with different users, we sent a JSON

object to the database with a path to each video file for each user. Similar to testing the videos,

we ran this script from our laptops to ensure the data was being processed correctly. From here,

we moved the script to the board to ensure the data can be processed and sent correctly.

Finally, we ran the upload script and the json script in tandem such that when the upload

script ensures the video has been uploaded, it updates the database tables with the correct user

information.

10

○ ALPR Board Software Software Testing

The Sparrow GUI was designed and implemented in Python allowing for straightforward

testing. The GUI was tested with verification, validation and uncertainty testing. For verification

testing, each iteration of the GUI (v1, v2 etc) was validated by multiple users to be bug free and

repeatable in normal operation.

Validation testing was done through the use of built in Python functionality. Using

custom methods and asserts, we were able to test and assure that the program was operating as

we expected it to. For instance, a test was used to check the output directory and ensure that an

output video and JSON file were being stored upon completion of the video recording process.

Finally, uncertainty testing was completed by simulating edge and corner cases in our

code. The GUI allows for direct interaction with the end user, so we needed to ensure that the

program would work with all combinations of user input (intended and unintended).

Additionally, tests were conducted to verify continued operation in the case of file errors. If the

software records a video and tries to save it to the system with an existing file identically named,

the system should continue to operate. Similarity, if the video recording or ALPR process fails,

the system continues to run without crashing.

○ ALPR System Testing

To test our OpenALPR system, we first began by ensuring that the software was able to

recognize our third party camera and read license plate images when uploaded to the device.

Once that was confirmed, we transitioned to feeding the software a video of different license

plates and recording the accuracy of the detection to certify that the detection rate of the

software was viable for our project scope. Our viability threshold was a license plate detection of

80% or higher and the open source software was able to detect the correct information 83% of

the time.

Once the threshold was confirmed, we determined a target rate of detection per minute

that we would like to achieve, plates per minute. Given a video stream and taking the accuracy

measurements into account, we wanted the average user to be able to detect up to 5 correct

plates per minute in a high traffic situation. Using the GUI, we took note of how many license

plates were detected per minute from a high traffic videostream and averaged it over the total

duration of the video. Our findings were that the software detected ~5.7 plates per minute,

above the target rate we had set.

7. Project Context

When doing research on license plate aggregation tools early on the project, we noticed more

and more instances of products that do very similar things. Rekor Systems is a license plate detection

tool that’s used as a way to monitor traffic and send reports of vehicles. When building Sparrow, we

used this tool as inspiration. OpenALPR is an open source software we discovered early on that helps us

get license plate numbers off images of license plates and associate them with the state the car is from.

Altogether, both of these products helped us create the functionality behind Sparrow.

The idea of recording a user's license plate information can manifest concerns about privacy.

These concerns are shared among us as members of the development team as well, and we take them

incredibly seriously. A large governing reason for the continuing development was best stated by

11

someone we interviewed for feedback on the project: “If [we] do not create the idea, then someone else

eventually will, and they may have worse intentions”. So, given that we believe the Sparrow system has

strong potential for good in the world we choose to continue with careful and deliberate development.

As part of this cautious development, we have amended the original concept multiple times. One

such amendment proposes the use of a transparent system for law enforcement to request data access.

For instance, if law enforcement were to demand data about a vehicle claiming that it had been stolen

the company would send a letter to the registered owner of the vehicle to ensure transparency for all

parties. The owner of the vehicle will have to approve the request before law enforcement continues.

Such ideas will continue to be adapted into the growing Sparrow concept. Additional information about

law enforcement using the Sparrow system is contained in Appendix III.

8.Appendix I – “Operation Manual”

○ ALPR Board Operation

■ Initial Setup

1. 7 Inch Display

a. Plug in the associated power supply to the provided 7 inch display

b. Plug the other end into your power source

i. A standard 120v wall outlet

ii. Or, the provided inverter, plugged into an automobile outlet

c. Attach one end of the provided HDMI cable into the display

2. Jetson Board

a. If not already attached, screw in provided WiFi antennas to the ports on

the side of the device

b. Plug in the power supply to the NVIDIA Jetson TX2

c. Plug the other end into your power souce:

i. A standard 120v wall outlet

ii. Or, the provided inverter, plugged into an automobile outlet

d. Connect the keyboard/mouse receiver into the USB-A->MicroUSB

adapter

e. Plug the adapter from step 3 into the MicroUSB port on the board

f. Turn on the keyboard using the switch on it’s top edge

g. Insert the other end of the HDMI cord (from the display, mentioned in

step 1c)

h. Plug the web camera into the USB-A port on the device

■ ALPR Board

1. Turn on the NVIDIA Jetson TX2 by holding holding the power button until the

lights turn on

2. Login with the following credentials

a. Admin Username: Senior Design

b. Password: wallace103

3. Open a new instance of terminal

a. Run the custom command to create a new virtual camera

i. sudo newVCam

12

4. Open another new terminal instance

a. Run the custom command to stream the web camera input to the virtual

camera

i. videoSplit2

5. Navigate to the SparrowGUI directory

a. cd home/senior-design/SparrowMaster/GUI

b. Open a new terminal instance in this location

i. Run the following command to start the GUI

1. python3 SparrowV2

■ SparrowV2 Graphical User Interface

1. Press the record button, which will:

a. Initiate video recording capture

Figure 8.1: GUI process to begin video capture

b. Initiate ALPR analysis of the live footage

2. Press the stop button to:

a. Stop video recording and save an AVI output

13

Figure 8.2: GUI process to stop recording

b. Stop ALPR analysis and save a JSON output

3. Press the upload button to:

a. Upload the most recent AVI and JSON outputs from the program

Figure 8.3: GUI process to upload to Amazon S3 bucket

14

○ Mobile Application Operation

Figure 8.4 : Signup Figure 8.5 : Login with email and password Figure 8.6: Add a car

 (Step 1) (Step 2) (Step 3)

Figure 8.7: Press info to see details Figure 8.8 :Press the car picture Figure 8.9 :Press top right button

 (Step 4) (Step 5) (Step 6): Navigate screen & sign out

15

Figure 8.10: Press Drive button Figure 8.11 :Press License lookup Figure 8.12 :Select a plate

(Step 7): start record & stop (Step 8): search for car plate (Step 9): See rating, and able to rate

Figure 8.13: Press VIEW VIDEOS Figure 8.14 :Search a Video Figure 8.15 :Select to watch video

(Step 10): search videos (Step 11): display the timestamp (Step 12): videos pull from S3 bucket

16

9. Appendix II: Alternative Designs

○ Web Application

When the COVID pandemic began last semester our team had to make some large

changes to our project plans. Given the circumstances, and various locations of team members,

we needed to pause development of the ALPR board itself. Instead, part of our team transitioned

to developing a web application for the Sparrow board.

We spent time investing different web app platforms and writing prototype software for

the application. The intended use case of the webapp was to browse and rate videos as well as

manage user account settings all from a hosted website (prototype image posted below). Once

we returned to campus this semester (Fall 2020) we decided against further development of the

web application. In order to make the most impactful progress on the project, our team thought

it best to return to the development of the hardware itself.

The decision proved to be a wise one, as we were able to create a working prototype by

the end of the semester. The mobile application team took on some of the features that were

initially intended to be part of the web application so we retained functionality.

○ ALPR cloud computation

One potential improvement that we can make for the dashcam defender is getting rid of

the Jeston board and have the computation done on the cloud. Since the late decision of using

AWS as a team, we realized that the ALPR could be run on the cloud. It will eliminate the use of

the jetson board for computation. The idea has the camera getting the video uploaded or

streamed to a cloud service. It will reduce the physical equipment that we currently have, which

will correlate to the product's lower cost. The Jetson Nano is costly that will make it more

affordable for the potential of more users.

17

○ Design Document from CPRE/EE/SE 491 (Pages 18 - 41)

Executive Summary

Development Standards & Practices Used

Software practices

● Make code correct first and fast second

● Always test your code

● Agile Methodology

● Integration with hardware

● Simple design

● Pair programming

● Continuous integration

Hardware practices

● Integration with software

● Always test and make sure it is working

● Agile Methodology

Summary of Requirements

● Knowledge in mobile development

● Hardware development

● Database Design

Applicable Courses from Iowa State University Curriculum

● ComSci 309

● CPRE 288

● COMS 228

● SE/CPRE 185

● COMS 363

● CPRE 310

New Skills/Knowledge acquired that was not taught in courses

● Hardware Assembly

● Dart Programming Language

● Flutter Framework

● Hardware / Software integration

● API Calls

● Angular

18

1. Introduction

1.1. Acknowledgement

We thank Dr. Joseph Zambreno for his consultation as our senior design advisor. We

acknowledge the development done by our team members Evan Timmons, Cobi Mom, Danny

Yip, Scott Vlasic, Durga Darba, and Ismael Duran.

1.2. Problem and Project Statement

The roads as we know it are full of reckless drivers. What if there was a way to automatically

detect when you are near a reckless driver? The solution that we are proposing is the ability for

everyday consumers to come together and crowdsource information on reckless drivers. This is

done by utilizing DashCam Defender, a product designed by us to automatically scan license

plates and report reckless drivers when they are encountered instantly. Reporting is supported

by a public facing website and app. This way, users can look up and report reckless drivers from

multiple fronts.

1.3. Operational Environment

Since the product will be mounted on the windshield, it needs to be able to handle the

fluctuation in temperatures that may occur in the car. Therefore, we will have to construct a

container to protect the device from severe weather when the car is unattended as well as from

consumer damages. This container must also be able to handle rough road conditions and keep

the camera stable. Another condition we must consider is the camera’s ability to capture data

given poor weather. To ensure this, we will have to use a camera that returns images in 1080p

or higher.

1.4. Requirements

Project requirements

● Dash camera that can record in 1080p

● A powerful enough computing board that can process the machine learning application

● A computation board that can work with peripherals

Functional Requirements

● A license plate reader that can accurately read license plates from nearby cars

● A platform where the user can report and view information

UI requirements

● Have an aesthetically pleasing but simplistic application for the user

● Have a driver mode focused on simplicity for maximum road attentiveness

1.5. Intended Users And Uses

We have three major intended users for our product:

● Police Departments

○ Police can lookup license plates and their last known locations to solve crimes

faster

● Everyday Drivers

19

○ The everyday driver can report poor drivers and get alerts to notify them of when

they are in the presence of a poor driver.

● Insurance Companies

○ Insurance companies can use driver ratings and dashcam footage to adjust their

rates and claims

1.6. Assumption And Limitations

Assumption:

The end product will be able to work under a certain degree of poor weather. It will not be able

to work if the weather is too harsh, where the camera is not able to capture clear pictures. The

end product will be used in the United States.

Limitations:

The end product will be a dashcam and a mini pc in the client’s car, completing the Dashcam

Defender apparatus. The cost to produce the end product shall not exceed one hundred and fifty

dollars. The system will not require more than 12 Volts. (The most common voltage output

found in an Automobile Auxiliary Power Outlet)

1.7. Expected End Product And Deliverables

Hardware Product

● The expected physical product is that we have a dash camera and a computational board

that can communicate with each other

● The computation board is integrated with ALPR (Automated License Plate Recognition)

● The computation board can send data to a mobile device

Mobile Application

● An aesthetic mobile application

● A driver mode screen

● The application should be able to send data to a server

● User should be able to view information like cars encountered

2. Specifications and Analysis

2.1. Proposed Approach

Our proposed approach is to find existing resources that will help us fill in for things that we

need. A mobile application will be developed utilizing the Flutter Framework. We chose Flutter

because of its great layout design and versatility to create an android application and IOS

application with one project. The camera and mini PC have to work together and the other half

of the team will work on that. The mini PC we are going to use is the NVIDIA Jetson TX2. We

chose the Jetson because a Raspberry Pi isn’t powerful enough to run machine learning

applications. The camera we are going to use is a standard 1080p camera. Our solution to

analyze license plates is to use an open-source Automatic License Plate Recognition software

called OpenALPR.

20

2.2. Design Analysis

Currently we have a mock database to test the connection between the hardware and the

software. From here, we need to move into figuring out how to organize and send the

information to fill the tables in the database. Our final version of the product will be doing this

automatically, so we need to ensure the information can be processed efficiently. On the

hardware side, our goal is to be able to read license plates at a rate of 5 per minute. On the

software side, the program has to be able to multithread efficiently enough to process each

license plate and store the information separately. The main strength of the project is in the

database and the pushing and pulling of the data from it. The weakness, currently, is in the way

we are pushing the data when the device doesn’t have easy access to the internet.

2.3. Development Process

We are going to be following the Agile Methodology for our development processes. Specifically,

we’re going to split up into two separate teams of three; one team focused on software and the

other focused on hardware, following the principles of Agile development. We think Scrum is

the best choice for the development process because it will allow us to create small goals that are

attainable as well as foster communication and collaboration within each group. We’ll

incorporate 2 week sprints because it aligns with the submissions of the bi-weekly reports. We

will keep track of the work to be done in sprints in Trello.

2.4. Conceptual Sketch

Figure 2.1: System Level Conceptual Sketch made by Evan Timmons

3. Statement of Work

21

3.1. Previous Work And Literature

OpenALPR - We’re utilizing this service for license plate recognition because it has an acceptable

pre-trained model on license plates.

3.2. Technology Considerations

Strengths

● Computer power on NVIDIA Jetson TX2 is adequate for our use case

○ 256-core NVIDIA Pascal™ GPU architecture with 256 NVIDIA CUDA cores

○ Quad-Core ARM® Cortex®-A57 MPCore

○ 8GB 128-bit LPDDR4 Memory

○ 32GB eMMC 5.1 storage

● OpenALPR is accurate enough (99%) for our use case

● Flutter allows for speedy development with one single codebase

○ Maintains native performance

Weaknesses

● OpenALPR is not 100% accurate, so edge cases can be tricky

○ OpenALPR is self-rated to be 99% accurate

● Cellular service in rural areas is not sufficient for constant data uploading. It will only be

able to upload the data once it receives a sufficient internet connection. This will be

dependent on the company of mobile data.

● The camera quality will not be as good in bad weather conditions

○ e.g. rain, snow, hail, etc.

Possible solution

● Create our own license plate recognition system that is more accurate

○ Requires training our own model

○ This will take a large amount of time with a lot of data required

● Only upload data while connected to a reliable source

○ This allows devices with data caps to upload only when connected to Internet

3.3. Task Decomposition

Hardware

● Hook external camera to NVIDIA Jetson

● Connect NVIDIA Jetson to OpenALPR

● Connect NVIDIA Jetson to mobile application

● Test runs

Software

● Develop Flutter-based mobile application

○ The mobile application is for the user to be able to connect their phone to the

mini-PC to be able to interact with each other. The mobile application accesses

the information about drivers as well as sends information to a server.

● Develop PostGRES database

22

○ Set up API to connect to database

○ Create security roles

○ Talk with subteams about what to store

○ Create high level diagram

○ Allow API to have public access

○ Create security when making api calls

○ Work with subteams to ensure POST and GET calls work properly

● Connect mobile application with NVIDIA Jetson

○ Connecting the mobile application and the Jetson is to send information from the

jetson to the phone, then for the application to send or store information from

the PC. It accesses the dash camera via the mobile application.

3.4. Possible Risks And Risk Management

Distracted Driving

● Use of mobile application while driving can be distracting to the driver

● To manage, we are utilizing a simple interface to minimize distracted driving

Hardware Compatibility

● NVIDIA Jetson’s built in camera is not compatible with OpenALPR

● To manage, we’re hooking up an external camera instead

Privacy Concerns

● The data we are working with is personal and will stay personal

● To manage, we are going to have a clear and robust data management policy

● There is a risk that user personal information will be stolen. We secure the personal

information by having each user have their own account, which requires a unique

username and password. This will be able to protect the privacy of users.

● We will prevent users from searching other user’s footage. We will only allow users to

search for the rating of other users, or the last location of the user if the user allows us to

show their location.

Technical Risks

● We don’t have any experience in machine learning. Developing machine learning that

recognizes car plates might cost us some time and resources to learn on it. We will

encounter this issue by spending more time to learn it online.

Software Risks

● If this mobile application has too many users using it at the same time, the database

might be overloaded. We need to fix this by upgrading the server to be capable for all

users to use it at the same time.

● Our team doesn't have much experience in developing software in Flutter or using the

Dart language. We will learn it as we go.

3.5. Project Proposed Milestones and Evaluation Criteria

23

Key Milestones (in chronological order)

● Hardware Assembly completed

○ NVIDIA Jetson and external camera hooked up successfully

○ Designed and built enclosure for hardware

○ Completed power source for in-vehicle use

● Database Setup completed

○ Created initial test tables

○ Understood database design based on subteam requirements

○ Created users on the virtual machine to make database calls

○ Created API to speak with the database

○ Made API public so that that different subteams can access it

○ Began integration with the mobile app

○ Began stress testing the api through the app

● Mobile application completed

○ Flutter based mobile application with all requirements ready to go

○ A driver mode option for the safety of the driver

○ Is able to send information to the database/server

○ The application is able to receive information from the server successfully

○ IOS and Android mobile application are both working successfully

● OpenALPR working with NVIDIA Jetson w/ camera

○ Able to successfully feed video data into OpenALPR and detect license plates

○ OpenALPR tested to ensure maximum performance achieved based on hardware

○ Able to analyze 720p video at full 60fps

● Web Application

○ Fully functionally angular prototype

○ Search function to filter through 1000+ available videos

○ Search time of less than 2 seconds

○ Multi user capacity of 100 simultaneous instances

○ Testing suite implemented with Jasmine and Karma

● Complete working product

○ Able to interface with recorded data inside mobile application

3.6. Project Tracking Procedures

● GitHub for version control

○ 7ombers of our team will be doing work on separate branch

○ Code will be reviewed before merging

● Trello for backlog and tasks to be done during bi-weekly sprints

○ Trello will help with keeping track of progress of task

○ Task will be divided into section of To-do, in-progress and finished task

○ Each task will have a description and checklist work what need to be done to

complete the task

○ Each task will be assigned to team member

● Google Drive for document sharing

24

○ Document that need to be stored in a google drive folder that is accessible for

every team member

○ Everyone will be able to edit the document

3.7. Expected Results and Validation

● Fully functional hardware consisting of NVIDIA Jetson w/ camera that interacts with our

Flutter based mobile application and OpenALPR to successfully read license plates from

a user's car ride.

● Going to verify these expected results with real life examples.

● Mobile application will be verified by generating an android and ios emulator to run on

it. (see section #6.3 (figure 6.1~ 6.5) for more details on the mobile application User

interface) These UI are the most important UI. We might still need some other UI to

make our mobile application better. For example, UI for users to rate other vehicles, to

search for other vehicles, and settings.

● Web application result (see section #6.3 (figure6.6~ 6.10) for more details on the mobile

application User interface)

4. Project Timeline, Estimated Resources, and Challenges

4.1. Project Timeline

Figure 4.1: Timeline of milestones

Figure 4.2: Color keys

Our Gantt chart for the project is shown above. In column one, the tasks are divided into two

subsections, one for each semester. Tasks are mainly grouped by the semester of which they

25

begin. We highlighted the key deliverables with unique colored outlines and explained them

right below the chart.

Uniquely, our project has been hindered by the COVID19 pandemic. As a result, our tasks have

been divided to account for the inability to host physical meetings. Notably, hardware

prototyping was put on hold until our team is able to meet again next semester as we are unable

to order new parts to continue the prototyping phase.

4.2. Feasibility Assessment

For a completed project, we would like to have the mobile application, web application and

hardware completely developed and tested. Due to a variety of factors, mainly time and access to

hardware, this is not likely feasible. Our hope is that we are able to complete enough of each part

of the project to have a working prototype with all core features. However, it is likely that not

every component will be completed. The software part (mobile application and web application)

are more feasible because we can distribute work, and work on the different parts, then merge it

back. We just needed to have more virtual meetings, and we did not need any equipment from

the lab. While the hardware is not feasible because we need equipment, and we would need to

work on it in the lab. We can’t work in the lab, and we can’t meet face to face to work on the

hardware part due to COVID-19.

26

4.4. Personnel Effort Requirements

27

Tasks to be Completed Estimated Time to Complete

Present Concepts
The presentation of concepts only took our team 1

week to complete and was done during the first

bi-weekly period

Research Potential Technologies
Researching technologies took our team a week to

complete and another week to order the hardware

components we had decided on.

Hardware Prototyping
Hardware prototyping is estimated to take 14 weeks

to complete over two semesters. This task will

involve creating a prototype from the NVIDIA Jetson

TX2 and testing it in the environment of a vehicle.

Initial Mobile Application

Framework

Initial mobile application framework took 4 weeks to

complete and allowed our software team to get a

better feel of Flutter.

Database Design
Database design began our second biweek and will

continue for 8 weeks until biweek 5. The main goal

will be to establish communication between both the

mobile app and the web app.

Website Design
Website design is estimated to take 8 weeks over two

semesters. The web app team will learn angular and

create a web app that will allow users to view

recordings from driving sessions and search license

plate numbers to find specific recordings.

Create Hardware Container
Our hardware container will take us approximately 4

weeks to do and will account for stress testing of the

finished product. We will need to research more into

what materials to use for the enclosure so that there

are no hardware performance issues as well as

determining the proper dimensions the enclosure

needs to be.

Test Final Configurations
Testing our final configurations is estimated to take

around 8 weeks during only the final semester.

Testing final configurations will consist of testing

usability and load testing of the mobile application

and web application. This will include making sure

the user experience is solid and that there are no

performance issues or bugs within either application.

Finish Database Design
Finishing the database will take us 8 weeks to

complete, beginning semester 2, and will take into

account memory management and speed of getting

Table 4.3: Requirements for personal efforts

4.5. Other Resource Requirements

The costs needed for these requirements are further detailed in section 4.3

28

information.

Hardware Testing
Hardware testing is estimated to take 2 weeks only

during the final semester. Testing will consist of

ensuring that OpenALPR is working on the NVIDIA

Jetson TX2 and that the camera is recording driving

sessions at 1080p and sending those recordings to

the database.

Resource

Requirements
Comments and Alternatives

Fuel

While we have vehicles that we can use for testing free of charge, we

will have to pay for the fuel costs that will be accrued after driving for

miles of testing

Driver
This can be anyone on the senior design team who holds a valid

driver’s license

3D Printed Components
The parts should not be a large expense as we can pay for the price of

the materials used.

OpenAlpr
This software is open source and has been lightly tested by the team.

There is a higher performing paid alternative that could be used.

NVIDIA Jetson TX-2

OpenALPR site provided benchmarks with the Jetson which we think

meets the specifications of our project. Based on benchmarks we

should be able to run OpenALPR up to 30 fps on this board, and it also

has all I/O needed (WiFi, bluetooth usb etc)

Sandisk 256GB SD Card

OpenALPR is typically not throttled by storage speed, this SD card

provides a large amount of memory for testing, while also maintaining

a cheap price

Unzano HD Webcam 1080p

A usb camera that will plug and play with Ubuntu and will work with

OpenALPR software. The camera is 1080p (required for project) and

has long distance manual focus (uncommon for webcams and required

for project)

Logitech K400 Plus Wireless Touch TV

Keyboard

Combo keyboard and mouse that can be used in a vehicle for prototype

testing

Ultra-thin Monitor 7 Inch HD Portable

Display Screen

Small monitor that can be used for prototyping and to emulate the

product within the car.

4.6. Financial Requirements

There are many different hardware components and peripheral devices that are required for our

project to be successful. Using the ETG to order these parts, we have come to the conclusion

that the total financial resources required for our project is $450. This includes parts such as

the NVIDIA Jetson TX2, a 1080p web camera, a SD storage card, and display monitor.

5. Testing and Implementation

5.1. Interface Specifications

We are going to use black box testing on our system if some part is not complete yet.

To test the mobile application we are going to develop unit tests using Flutter's own unit testing

library. To help us out with mocking dependencies, we are going to use the Mockito library that

is compatible with Flutter.

Our hardware development was cut unexpectedly short by the COVID-19 pandemic. However,

we did manage to run OpenALPR, an open source software that will be used in our project, on

the board. Eventually, the development board, an NVIDIA Jetson TX-2, will have to interface

29

Resource Requirements Cost

Fuel ~$50

Driver $0

3D Printed Components ~$30

OpenAlpr $0

NVIDIA Jetson TX-2 $299

Sandisk 256GB SD Card $54

Unzano HD Webcam 1080p $25.99

Logitech K400 Plus Wireless

Touch TV Keyboard
$24.97

Ultra-thin Monitor 7 Inch HD

Portable Display Screen
$45.99

Total Costs (estimate) ~$530

with our backend and mobile application. That task has been deferred to next semester when we

are able to continue with our hardware development.

5.2. Hardware and software

Software

We will decide to choose the best testing hardware and software once we have some part done.

Flutter test library is a package used in flutter to make test cases; It can be used to make unit

tests. It can be used for many functionalities on a mobile application. Mockito is a testing

framework. The framework allows us to mock dependencies rather than fetching them from a

database.

Database

We also use Postman to test the database by getting and posting data to it. This will allow us to

make sure our database is working well before the front end is accessing it.

Web Application and Hardware

For testing or angular web application, we will be using the Jasmine testing framework. This

will allow us to continuously test functionality and appearance as we add more to the web

application. For hardware testing the NVIDIA Jetson TX-2 we have nothing currently planned

for testing but will research more into it once we have access to the device again.

5.3. Functional Testing

We are going to test all the functionalities for our mobile and web application.

We will test our mobile application with unit testing in flutter. We will do some automation

testing.

We are building our web application using the Angular framework. The framework divides web

application components into “modules” with interconnected functionality. We have functional

unit tests for each module that has been implemented. Through the Angular CLI we are able to

frequently run our unit tests using the built in Karma test runner.

We are using SQL and python to create our backend. To test this, we have installed a framework

called python virtual environment. This lets us deploy the database to a local port. From here,

we can run various commands through an API testing app, such as Postman, and ensure the

database is read from and populated correctly. We followed the iterative design approach

outlined in [6].

5.4. Non-Functional Testing

Security - We are having a login page, which requires a username and password for the user to

login. The passwords will be encrypted. It will also be able to connect with Facebook accounts.

Performance - We’ve launched our mobile application in Android and iOS environments.

Currently, they run smoothly and it is doing what we are expecting.

30

Usability - Users are able to use it like a normal mobile application, which prioritizes user

experience while not skipping out on functionality.

Compatibility- We designed the mobile application to work on Android and iOS. We have tested

it with a few android and iOS emulators.

For the web application there are many non-functional tests that we are considering as well.

First off is the performance of the application. To do this we will attempt to create load tests to

create high demand on the application and test its response times. Another test we must

consider is usability. To test this we will have usability test sessions where we can express our

concerns with the user experience To test for compatibility we will make sure that the web

application looks and navigates the same on multiple web browsers/environments. Finally, to

make sure our web application is secure we will require two factor authentication.

5.5. Process

Mobile App

We will be testing the Mobile Application with Flutter’s built in unit testing library,

named the Flutter Test Library. This allows us to test the functional requirements of the app. To

test aspects that require us to use data from our database, we will use Mockito to mock

dependencies over fetching real data from our database, making testing quicker.

Flutter has a built in Hot Reload feature that allows for real time compilation of code into

functionality at the press of a button. This speeds up our testing workflow greatly and allows the

team to develop features quicker and debug quicker, especially for functional testing.

Web App

We will be testing the Web Application with the Jasmine testing framework. Jasmine has

the Karma testing interactive interface built in for more seamless testing procedures. We have

yet to begin testing the web application, as it is not yet complete. When we do begin testing, we

will focus on the search result speed, aiming for below 2 seconds of time. Additionally, we want

to test the Web App with upwards of 1000 videos to ensure that the accompanying features still

work properly. Finally, we want to implement multi user testing, confirming that 100 users can

load the application and watch a clip at the same time.

Database

For the database, we have begun initial testing of the API by opening it publically such

that the mobile app can access it. This will ensure the API can go out to the database and make

requests accordingly. From here, we moved to initial stress testing of the database by making

several calls to the database every hour. From here, we will redo this process once the Webapp is

ready to receive information through the api. We plan on expanding this so that the api can send

and receive video information.

Hardware

As mentioned in an earlier section, we will be testing hardware by ensuring that

OpenALPR is installed and configured correctly on the NVIDIA Jetson TX2 and that it is

31

recording driving sessions in 1080p. We will also test to make sure that the database is

configured to receive these videos from the hardware.

Figure 5.1: Process Flowchart

5.6. Results

Given the structure of our development, our results will be obtained during our 492 semester. At

this time, we are only able to discuss how we will collect and display the results that we do end

up achieving, and speculate upon the efficacy of our development.

Failures

● Facebook login page in Flutter is failing to run on iOS.

Successes

● Facebook login page is working when we run it on an Android device.

What we learned, and how we plan to change it

● For the software team, we have learned how to work on flutter by using .dart language.

We might add a sign in with google button, or we might remove facebook login button if

we are not able to resolve the issues that it is failing to run on IOS.

Modeling and Simulation

● We will add modeling and simulation information next semester once it has been

completed.

32

Issues and challenges

● Our team has no experience in flutter and dart.

● We are not being to meet by person to discuss about the project due to the virus

The hardware team is in a similar position to the software team in that the majority of our

results will be obtained during the 492 semester.

Failures

● Inability to configure the built-in camera on the NVIDIA Jetson TX-2

Successes

● Over the course of the semester, we have been able to set up the virtual machine with a

Postgres database to store information.

● We’ve created a basic api that allows different subteams to begin integration to the

project as a whole.

● Screenshots of test data being sent and received from the database

e:

Figure 5.2: Screen capture from Postman pulling user data.

33

Figure 5.3: Screen capture of the virtual machine reporting each API call.

Information Learned

● We are beginning to learn Angular to develop our web application and have had success

setting up the database.

Issues and Challenges

● Inability to meet in person to test and configure the NVIDIA Jetson TX2

● Inexperience with developing in Angular

6. Closing Material

6.1. Conclusion

In order to help drivers on the road, we need a better way to hold reckless drivers accountable.

With our app and dash cam, we can do this. Furthermore, we can help insurance companies and

the police get a better idea of people on the road. By meeting our specifications through the

milestones we’ve set, we will be able to finish this project in a timely fashion.

34

6.3. References

General Internet Site

[1]

Codesundar, “Flutter Facebook login with Example,” codesundar. [Online].

Available: https://codesundar.com/flutter-facebook-login. [Accessed:

18-Apr-2020].

Developer Documentation

[2]

“Hot reload,” Flutter. [Online]. Available:

https://flutter.dev/docs/development/tools/hot-reload. [Accessed:

18-Apr-2020].

Official Agile Manifesto

[3]

K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler,

J. Grenning, J. Highsmith, A. Hunt, R. Jefferies, J. Kern, B. Marick, R. C. Martin,

S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas, “Manifesto for Agile

Software Development,” Manifesto for Agile Software Development, 2001.

[Online]. Available: https://agilemanifesto.org/. [Accessed: 18-Apr-2020].

Journal Article in Scholarly Journal (published free of charge on the

Internet)

[4]

S. Du, M. Ibrahim, M. Shehata, and W. Badawy, “Automatic License Plate

Recognition (ALPR): A State-of-the-Art Review,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 23, no. 2, pp. 311–325, Jun. 2012.

35

General Internet Site

[5]

“Setting up the local environment and workspace,” Angular. [Online]. Available:

https://angular.io/guide/setup-local. [Accessed: 15-Apr-2020].

Journal Article in Scholarly Journal (published free of charge on the

Internet)

[6]

S. W. Ambler, “Test-Driven Development of Relational Databases, ” IEEE

Software, vol. 24, no. 3, pp. 37 - 43, May-June 2007.

36

6.5. Appendices

Any additional information that would be helpful to the evaluation of your design document.

If you have any large graphs, tables, or similar that does not directly pertain to the problem but

helps support it, include that here. This would also be a good area to include hardware/software

manuals used. May include CAD files, circuit schematics, layout etc. PCB testing issues etc.

Software bugs etc.

Figure 6.1: Login page Figure 6.2: Car selection page Figure 6.3: Sidebar

Figure 6.4: Mode Selection Page Figure 6.5: Driver Mode page

37

Figure 6.6: Concept image of full system in a vehicle

Figure 6.7: Prototype law enforcement database login

Figure 6.8: Prototype law enforcement license plate search

38

Figure 6.9: Prototype law plate search results

Figure 6.10: Prototype WebApp

39

Figure 6.11: Hot Reload Flowchart

Software bugs- Mobile applications are working as normal in android phones, but having issues

while launching the mobile application for IOS.

List of Figures

Only figures used so far, made by Evan Timmons. Used in section 2.4 “Conceptual Sketch”

Additional figures will be cited here when used

40

Figure 2.1 System Level Conceptual Sketch

Figure 4.1 Timeline of milestones

Figure 4.2 Color keys

Table 4.3 Requirements for personal efforts

Figure 5.1 Process Flowchart

Figure 5.2 Screen capture from Postman pulling user data.

Figure 5.3 Screen capture of the virtual machine reporting each API call.

Figure 6.1 Login page

41

Figure 6.2 Car selection page

Figure 6.3 navigation bars

Figure 6.4 Selection page

Figure 6.5 Record buttons page

Figure 6.6 Concept image of full system in a vehicle

Figure 6.7 Prototype law enforcement database login

Figure 6.8 Prototype law enforcement license plate search

Figure 6.9 Prototype law plate search results

Figure 6.10 Prototype WebApp

Figure 6.11 Hot Reload Flowchart

10. Appendix III: Other Considerations

○ ALPR System Enclosure

In the next phase of our development, the team would continue working on a much safer

enclosure for the NVIDIA JETSON board. With our current setup, there is a lot of room for the

board to get spilled on or damaged in a car accident, so our next course of action would be to 3D

print a casing for it.

We would do this by first figuring out which part of the NVIDIA JETSON are absolutely

necessary and which parts aren’t. From here, we would custom build the PCB and take out any

unnecessary space. This would ensure that the user experience would be clean cut and the board

itself wouldn’t be a safety hazard. Finally, we would design a casing around the board that

protects it from the elements while allowing complete visibility of the road.

○ Law Enforcement API System

If development were to continue, the Sparrow team would create an API system to be

used by law enforcement agencies. A system like Sparrow could be incredibly useful to find and

prosecute criminals and potentially save lives. As alluded to earlier in the document, the system

could be used to identify Amber Alert vehicles in real time and notify authorities of their

location. Additionally, the system could be used to find stolen vehicles, get away vehicles, and

potential convicted felons.

As discussed in the context portion of this report, the power of this software comes with

valid privacy concerns. The Sparrow team takes these concerns very seriously and will

implement measures to protect users’ privacy. For instance, this Law Enforcement API would

only grant access to certain functionalities and most requests would have to be approved. To

maintain full transparency, all requests for data would be sent to the applicable registered

vehicle owners for approval. That way, in the hopefully infrequent cases where law enforcement

uses the system against better judgements, the vehicle owners are aware and can deny data

requests.

In the case where the registered vehicle owners are the criminals being investigated,

Sparrow would require law enforcement to obtain a warrant before obtaining access to the

vehicle data.

○ Insurance API System

If project development was continued, then the team would look to implement an

insurance system API to be utilized by insurance companies to assist with claims. This system

would be useful for determining the cause of blame in an accident and the footage could dispute

or support claims made in court. Insurance companies would also be less susceptible to

fraudulent claims as they would have the video footage available.

As with the law enforcement API, the insurance system API draws concerns of privacy

among users. The Sparrow team would ensure that insurance companies are not able to

discriminate against drivers based on the footage that they receive and that user rates are

dependent on the policies of the company.

○ Flutter mobile application

In the future, the software team would continue to implement more functionalities, and

more utilities. Our main goal is to make sure we have enough resources to maintain the mobile

application, and continue integration with the ALPR system, so that the mobile application can

42

work more efficiently. In addition, we can have functionality to control the user's camera to start

recording and stop recording, controlled by the phone remotely.

Furthermore, we can add the functionality that users can watch other people's videos, if

only if they have the privilege. We would also need to implement a stronger security feature into

this mobile application. This is because the video information is confidential, and it can be used

in many ways. We might need to have Multi-factor authentication, and have a strong encryption,

like AES 512 encryption to store user information in the database. This will definitely make

user’s information more secure.

11. Appendix IV: Code

○ Android/iOS Application

■ https://github.com/cobijm/Sparrow

○ AWS Lambda Functions

■ https://github.com/cobijm/SparrowLambdas

○ Embedded GUI

■ https://github.com/timmonse/sparrow-local-gui

12. Additional Documentation

Figure 12.1: Prototype law enforcement database login

43

Figure 12.2: Prototype law enforcement license plate search

Figure 12.3: Prototype law plate search results

Figure 12.4: Prototype WebApp

44

Figure 12.5: Prototype image 1

Figure 12.6: Prototype image 2

45

Figure 12.7: Prototype image 3

Figure 12.8: Prototype image 4

46

Figure 12.9: Hot Reload Flowchart

Software bugs- Mobile applications are working as normal in android phones, but having issues while launching
the mobile application for IOS.

13. List of Figures

47

 Example below

Figure 4.1 Featured: Mobile Phone, ALPR Board and Dash Camera

Figure 4.2 General Product Diagram to Show System Interaction

Figure 5.1 Mobile Application Database API

Figure 8.1 GUI process to begin video capture

Figure 8.2 GUI process to stop recording

Figure 8.3 GUI process to upload to Amazon S3 bucket

Figure 8.4 Signup

Figure 8.5 Login with email and password

48

Figure 8.6 Add a car

Figure 8.7 Press info to see details

Figure 8.8 Press the car picture

Figure 8.9 Press top right button

Figure 8.10 Press Drive button

Figure 8.11 Press License lookup

Figure 8.12 Select a plate

Figure 8.13 Press VIEW VIDEOS

Figure 8.14 Search a Video

Figure 8.15 Select to watch video

Figure 12.1 Prototype law enforcement database login

Figure 12.2 Prototype law enforcement license plate search

Figure 12.3 Prototype law plate search results

Figure 12.4 Prototype WebApp

Figure 12.5 Prototype image 1

Figure 12.6 Prototype image 2

Figure 12.7 Prototype image 3

Figure 12.8 Prototype image 4

Figure 12.9 Hot Reload Flowchart

